

MPC Air-Cooled Chillers MPC-FC Free-Cooling Chillers

½ - 100 Tons

When commercial grade isn't enough

Motivair[®] is a world-class supplier of water chillers for industrial process cooling, medical equipment and specialty HVAC systems.

The MPC and MPC-FC chillers offer an unparalleled range of cooling capacities, and available options that allow customers to select a chiller best suited to their business's needs.

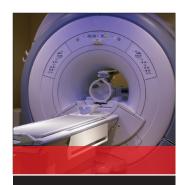
The MPC range of water chillers have earned a quality reputation, trusted around the world to provide reliable cooling for critical applications. Let our experienced team work with you to provide the right chiller for your application.

Defining Mission Critical Cooling

Reliability

The MPC range of chillers is manufactured using the highest quality components. All components must pass a rigorous test cycle before being selected for production use. All fan & pump motors are TEFC or TEAO, and are therefore suitable for outside use. All electrical components are UL and CSA listed. MPC chillers are CE certified, and are also certified by ETL to be in compliance with UL 1995 and CSA C22.2 standards. The combination of innovative design, premium components, and universal certification yields a final product worthy of the most demanding cooling applications.

Flexibility


Process cooling and HVAC heat loads often change throughout the workday. The MPC range features a unique "CYCLING" design that allows the chiller to adapt automatically to any heat load from zero to 100% of its capacity. This cycling design utilizes a large storage reservoir, to insure close water temperature control regardless of the load, or the load change. The MPC evaporators are NOT immersed in the reservoir, and are therefore readily accessible for service, repair or replacement. The reservoir also acts as a buffer against temporary surge loads. Substantial energy savings can be achieved during low load chiller operation. MPC chillers do not utilize a hot gas bypass valve, common to other chillers, because these valves create an artificial heat load, which requires the chiller to operate when the load is reduced. The unique MPC cycling design also allows it to be used on multiple processes in a single building.

Simple and Effective

MPC chillers are designed for simplicity and ease of use.

- "Cycling" refrigeration circuit
- Integrated centrifugal circulation pump
- Large internal storage reservoir
- Microprocessor controls
- Integrated Free Cooling Option
- Single point power connection

Application Defined Features & Options

Industrial Water Chillers

The MPC chillers can be applied to a wide range of industrial and commercial applications. Some common applications for MPC chillers include:

- Oncology Machines
- MRI Machines
- CT Scan Machines
- HVAC
- IT Rooms
- Pharmaceutical Mfg.
- Plastics Processing
- Printing Processes
- Hydraulic Cooling
- Welding Machines
- Lasers
- Metal Spraying
- Food Processing

"Cycling" Design for Energy Savings

The Motivair MPC chillers all contain an oversized thermal storage reservoir. This unique feature allows the chiller to cycle its compressor(s) and fan(s) off during reduced process loads, while the pump runs continuously. This will maintain water temperatures within +/-3°F of set point.

Competitive chillers typically use a hot gas by-pass valve to balance the chiller capacity against reduced loads, therefore wasting energy and causing unnecessary wear and tear on the chiller.

Scroll Compressors

Multiple high efficiency scroll compressors with R-410A refrigerant.

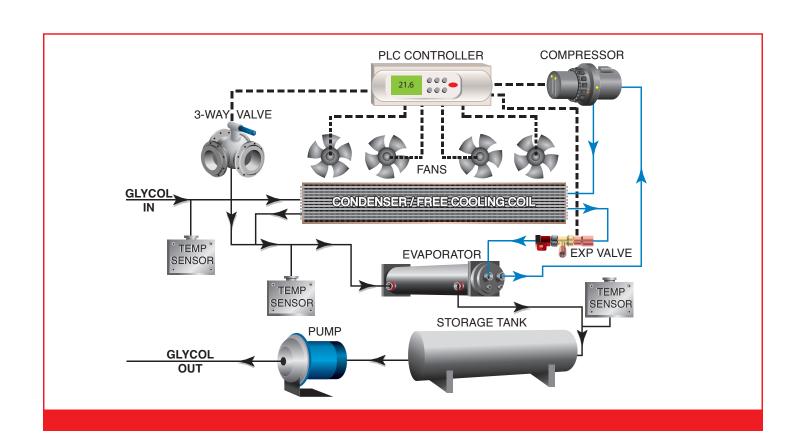
Designed to operate at high efficiency across the entire operating range with lower sound and vibration than traditional compressors. Unique scroll compressor design allows for resistance to liquid slugging.

Features

- R-410A environmental friendly refrigerant
- High efficiency, stainless steel, brazed plate evaporators
- Centrifugal circulation pumps with close-coupled TEFC motors
- Oversized thermal storage reservoirs with fill, drain & vent ports
- Powerful, easy to use, non-proprietary microprocessors - "plug & play"
- Heavier frame construction
 greater resistance to shipping, handling & operation abuse.
- Removable access panels for easy service & maintenance
- Standard high-pressure and low-pressure refrigeration gauges 5 tons and above.

Options

- Integrated Free Cooling
- 100% non-ferrous water circuit
- Laser (+/- 1°F) temperature controls
- High-pressure pump
- Duplex pump package
- Low ambient package
- High ambient package
- Castors for portability
- Centrifugal fans
- R-404A, R-134A


Motivair® Free-Cooling Chillers: The Ultimate Solution for Optimal Energy Savings

The Motivair® MPC-FC chillers with "Free-Cooling" capability are designed to provide the owner with optimal performance, year round, in varying ambient temperatures. This "Free-Cooling" option, available on models MPC 0800-9000 is supplied complete with pump and storage reservoir, "Free-Cooling" coil and the PCO3 advanced PLC control package – a unique single package for year-round energy savings.

The refrigeration plant is designed to cool the designated heat load during the highest summer temperatures. When ambient temperatures fall overnight or during cooler seasonal weather, the integrated "Free-Cooling" system is automatically activated. The system operates by directing the return chilled glycol through the "Free-Cooling" coil, before it enters the evaporator. This is achieved via an automatic motorized valve, controlled by the PLC,

whenever the ambient falls below the return chilled glycol temperature set point. The glycol is either partially or completely cooled in the "Free-Cooling" coil for maximum energy savings. As a result, less mechanical refrigeration is required to achieve the chilled glycol set point, and the refrigeration compressors are cycled off by the PLC, which continuously monitors the system.

Energy savings in areas with cooler winter months are substantial. Wear and tear on chiller components is dramatically reduced, due to fewer running hours during winter months. Automatic switching between mechanical cooling and "Free-Cooling" allows for optimal performance year round. As a general rule of thumb, "Free-Cooling" savings *more than pay for the initial investment in the first year of operation!*

Advanced Controls

The Microprocessor

The standard Motivair microprocessor controller is a very powerful, yet user-friendly device. It offers a wide range of standard controls and alarms to suit any chiller application. It can control up to 4 stages of cooling in the chiller. Optional communication features include a serial card connection to a remote PC and a full-feature, remote wall-mounting controller, connected via an RS485 cable up to 500 feet away. For those applications requiring up to 8 cooling stages, and/or a higher level of remote communication, the PC05 advanced PLC system is available from the MPC 2200 and above.

Standard Features & Alarms	XR-30C	Micro Chiller 2SE	PC05
Highly visible digital display	Х	Х	Χ
Multi-character LCD display			Χ
Remote start/stop relay		Х	Χ
General alarm relay		X	Χ
Supply water temp. display	Х	X	Χ
Return water temp. display		Х	Χ
Adjustable water set point	Х	X	Χ
Adjustable alarm set points	Х	X	Χ
°F/°C adjustable	Х	X	Χ
Manual alarm reset	Х	X	Χ
High refrigeration pressure alarm		X	Χ
Low refrigeration pressure alarm		X	Χ
Freeze alarm	Χ	X	Χ
Phase/Voltage alarm		X	Χ
High water temperature alarm	Χ	X	Χ
Low water temperature alarm	Χ	X	Χ
Adjustable anti-compressor short cycle feature		X	X
Low water/glycol flow alarm			X
		•	
Compressor overload alarm		X	X
RS 232/RS 485 communication		consult factory	X
Ethernet communication			X
LON, BACNET, MODBUS communic	cation	consult factory	X
Optional remote wall mount controlle	er	X	Χ

MPC model	Standard	Optional
MPC 0005-0010	XR-30C	N/A
MPC 0150-0300	XR-30C	Micro Chiller 2SE
MPC 0500-1500	Micro Chiller 2SE	N/A
MPC 2200-9000	Micro Chiller 2SE	PC05

PC05 Display

PC05 Board

All MPC controllers feature a plug-in wiring harnesses, so they can be quickly and easily changed without tools.

MPC/MPC-FC Specifications

The content of the property of	AIR COOLED CHILLERS	MDO A	0000	0000	0500	0000	4000	4000	4500	0000	0000	0500	4000	5000	0000	7000	0000	0500	0000
Semble File Q	WITH SCROLL COMPRESSORS	MPC-A	0200	0300	0500	0800	1000	1200	1500	2200	3000	3500	4000	5000	6000	7200	8000	8500	9000
Margane Compressor Speciment Specim																			
Matheman Part Compressor Oy			U	U	U	U	U	U	U			U	U	U	U	U	U	U	U
Component profession professio	Number of Compressors		1	1	1	1	1	1	1			2	2	4	4	4	4	4	4
Section Properties Proper	Refrigerant Circuits	Qty	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
Mode	Compressor Running Current	A	4.3	5.5	8.3	12.1	14.8	18.5	23.8	14.85	18.5	23.8	26.3	14.85	18.825	25.7	28.625	37.275	42.075
Semigrate for Professor GPM S 7	Compressor Locked Rotor Amprage		35	46	62	95	125	150	179	125	150	179	225	125	150		225	272	310
Memor Park Park Park Park Park Park Park Par																			
Maintam Part Fow Patts Wilson Wil		*																	
Maintam Propositional Proposition Maintam Propositional Proposition Maintam Propositional Prop																			
Minimary Protection Currier A																			
Programme Programme Programme File 18 18 18 18 18 18 18 1																			
Number of Condemen Found 10	Integrated Pump External Pressure	PSI	38.11	38.16	36.92	37.68	33.51	36.74	36.53	34.95	34.77		29.81	34.05	31.76	34.05		43.39	
Confidence May 1.5 1.5 1.5 1.5 2.5 2.8 2.8 2.8 2.8 2.8 3.8 5.5 5.8 4.8	Integrated Tank Volume	GAL.	13	13	13	30	50	50	50	100	100	100	100	100	100	100	130	130	130
Total Patricke Flower My	Number of Condenser Coils	Qty	1	1	1	1	1			1	1			1	1				1
Marches Column Marches	Condenser Fan(s)	,																	
Sect Proposition Sect Sect Proposition Sect																			
Skard Present Level 31 28 1		А	1.57	1.57	1.57	2.54								11.4	11.4	11.4	19	19	22.8
Part		dΒΔ	53.4	53.6	53.8	60 N								62.5	62.8	63.8	67.5	69.6	69.4
Monimary Monor M	ELECTRICAL DATA	ab/t	50.4	50.0	50.0	00.0	JI .T	50.2				-	50.0	JL.U	02.0	50.0	51.5	55.0	55.4
Marinary Microard Microard File Marinary Microard Mic	Nominal Power	kW	4.56	5.3	7.45	10.62	12.84	17.29					41.31	49.1	60.74	75.24	94.2	121.2	140.08
Publicad Cummin (Fig. 14)	Maximum Absorbed current (FLA)																		
Fiel Load Current Fiel Monitor Circular Ampanoly MCA) A 8,5 B. 81 11,8 170 20,3 272 31,2 310 13,6 310 13,6 310 13,6 310 13,0 31	based on compressor MCC		11.27	14.27	18.47	27.94	33.54	44.38		67.9	83.45	95.45	101.95	131.1	159.1	185.4	219	293.8	343.6
Min Charagarty MicA A	Electrical								, .,										
Max Construction (Alpho) A 12.8 15.6 21.9 32.2 33.8 51.0 61.0 61.2 73.6 90.8 90.8 90.8 91.1 11.7 156.3 179.3 227.9 283.5 20.8																			
Sand Pieswe Livel at 22 1 (a) w Note) a8	. , , ,																		
Supplied Tunner																			
Length	,	UDA	30.1	30.2	30.2	33.0	30.0	02.3	51.5	33.0	55.1	00.0	00.0	01.4	01.0	02.2	04.0	00.0	00.0
Might Night		IN	32.3	32.3	32.3	39.8	63.4	63.4	63.4	87.4	87.4	87.4	87.4	132.1	171.5	132.1	171.5	132.1	171.5
In A Out Commertion Size N	Width	IN	24.2	24.2	24.2	28.3	33.9	33.9	33.9	43.3	43.3	43.3	43.3	43.5	43.5	43.5	43.5	43.5	43.5
Estimated Shipping Weight LBS 386 397 498 573 880 882 948 1,786 1,880 2,080 3,177 4,880 3,050 4,080 5,000 6,000	Height	IN	53.5	53.5	53.5	62.2	60.6	60.6	60.6	82.7	82.7	82.7	82.7	85.8	85.8	85.8	85.8	85.8	85.8
Moc-Warter Coole (Torn) MPC-W 200 6000 65	In & Out Connection Size																		
"Cooling Capacity - Water Cooled (Tons) BTUM 28.746 38.586 58.85 73.196 15.002	11 0												_	_					
Condenser Fluid Flow GPM 6 8 11 16 25 32 38 51 71 77 88 105 133 151 203 249 295																			
Full Load Current (FLA) A 5,9 7,2 10,0 14,5 17,2 2,8 28,1 34,0 42,9 53,5 58,5 67,1 83,0 112,8 124,5 162,3 188,3 Min Circul Ampacity (MCA) A 7,0 8,6 12,1 17,5 20,9 27,4 34,1 37,7 47,5 58,4 65,0 7,08 87,7 19,2 131,7 171,5 198,8 Min Circul Ampacity (MCA) A 7,0 8,6 12,1 17,5 198,8 38,1 37,7 47,5 58,4 65,0 7,08 87,7 19,2 131,7 171,5 198,8 Min Circul Ampacity (MCA) A 13,3 14,1 204, 29,6 37,7 45,5 58,6 83,8 13,8 83,7 19,2 131,7 171,5 198,8 Min Circul Ampacity (MCA) A 13,3 14,1 204, 29,6 37,7 45,5 93,9 24,6 60,8 32,9 13,8 87,7 10,5 144,9 103,2 204,9 240,																			
Max Overcurrent Protection (MOP)	Full Load Current (FLA)																		
Estimated Shipping Weight LBS 361 372 383 548 835 857 923 1,761 1,805 1,860 2,025 3,392 4,605 3,480 4,605 3,613 4,825	Min Circuit Ampacity (MCA)	А	7.0	8.6	12.1	17.5	20.9	27.4	34.1	37.7	47.5	59.4	65.0	70.8	87.7	119.2	131.7	171.6	198.8
Procession Pro	Max Overcurrent Protection (MOP)	Δ			00.4									85.7			400.0		040.0
PREE COLING CHILLERS MPC-FC 1000 1200 1500 2200 3000 3500 4000 5000 6000 7200 8000 8500 90000 90000 90000 90000 90000 90000 90000 900000 900000	E	А	11.3		20.4	29.6	35.7	45.9	57.9	52.6	66.0	83.2	91.3		106.5	144.9	160.3	208.9	240.9
March Marc	Estimated Shipping Weight			372	383	548	835	857	923	1,761	1,805	1,860	2,025	3,392					
Cooling Capacity	Estimated Shipping Weight			372	383	548	835	857	923	1,761	1,805	1,860	2,025	3,392					
100% Free Cooling Ambient	Estimated Shipping Weight FREE COOLING CHILLERS	LBS	361	372 Motiva	383 ir reserve	548 s the right	835 to make o	857 changes	923 to produc	1,761 t specific	1,805 ations with	1,860 out notice	2,025	,	4,605	3,480	4,605	3,613	4,825
Number of Compressors		LBS MPC-FC	361	372 Motiva	383 ir reserve	548 s the right	835 to make o	857 changes	923 to produc	1,761 t specification	1,805 ations with	1,860 out notice	2,025 e.	6000	4,605 7200	3,480	4,605 000	3,613 8500	4,825
Number of Compressors	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity	LBS MPC-FC Tons	361 1000 8.6	372 Motiva	383 ir reserve 1200 10.9	548 s the right 1500 13.0	835 to make o	857 changes	923 to produc 000	1,761 t specifica 3500 25.7	1,805 ations with 4000 29.2	1,860 out notice 50	2,025 e. 00	6000 44.0	4,605 7200 52.5	3,480	4,605 000 3.8	3,613 8500 77.3	9000 88.9
Refrigerant Circuits Qiy 1 1 1 1 1 1 1 1 1	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient	LBS MPC-FC Tons °F	361 1000 8.6	372 Motiva	383 ir reserve 1200 10.9	548 s the right 1500 13.0	835 to make o	857 changes	923 to produc 000	1,761 t specifica 3500 25.7 34	1,805 ations with 4000 29.2 33	1,860 out notice 50	2,025 e. 00	6000 44.0	4,605 7200 52.5	3,480	4,605 000 3.8	3,613 8500 77.3	9000 88.9
Evaporator Flow Rate GPM 21 26 31 41 52 62 70 83 106 126 153 186 214 PSI Drops (Evap-Valves-Piping) PSID 5.71 5.72 5.96 6.30 6.65 7.00 6.88 7.82 9.45 10.96 5.83 5.83 6.07 F.C. PSI Drop (E.C.+Evap-Valves-Piping) PSID 11.31 9.11 9.81 9.92 11.43 12.96 12.14 14.47 14.47 14.47 17.16 11.08 12.84 11.67 Integrated Drank Volume External Pressure PSI 27.52 32.71 31.68 30.70 41.46 36.58 39.33 36.20 38.51 40.32 40.32 40.32 36.28 46.37 Integrated Drank Volume Gallons 50 50 50 50 100 100 100 100 130 130 130 130 130 130 130 Condenser Fan(s) Qty 2 2 2 2 2 2 3 3 4 5 5 6 6 6 NOISE DATA	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant	LBS MPC-FC Tons °F Type	361 1000 8.6 32	372 Motiva	383 ir reserve 1200 10.9 34	548 s the right 1500 13.0 33	835 to make o 2200 17.1 33	857 changes	923 to produc 000 11.7	1,761 t specifica 3500 25.7 34 R-	1,805 ations with 4000 29.2 33 410A	1,860 out notice 50 34 3	2,025 2. 00 3	6000 44.0 32	4,605 7200 52.5 30	3,480	4,605 000 3.8 31	3,613 8500 77.3 28	9000 88.9 21
PSID Drops (Evap+Valves+Piping) PSID S.71 S.72 S.96 G.30 G.65 7.00 G.88 7.82 9.45 10.96 S.83 S.83 G.07 E.C. PSID Drops (Evap+Valves+Piping) PSID 11.31 9.11 9.81 9.92 11.43 12.96 12.14 14.47 14.47 14.47 17.16 11.08 12.84 11.67 Integrated Pump External Pressure PSI 27.52 32.71 31.68 30.70 41.46 36.58 39.33 36.20 38.51 40.32 40.32 40.32 36.28 46.37 Integrated Pump External Pressure PSI 27.52 32.71 31.68 30.70 41.46 36.58 39.33 36.20 38.51 40.32 40.32 40.32 36.28 46.37 Integrated Tank Volume Gallons 50 50 50 100 100 100 100 13	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors	LBS MPC-FC Tons °F Type Qty	361 1000 8.6 32	372 Motiva	383 ir reserve 1200 10.9 34	548 s the right 1500 13.0 33	835 to make o 2200 17.1 33	857 changes	923 to produc 000 11.7 33	1,761 t specifica 3500 25.7 34 R 2	1,805 ations with 4000 29.2 33 410A 2	1,860 out notice 50 34 3	2,025 e. 00 3 3	6000 44.0 32	7200 52.5 30	3,480	4,605 000 3.8 31	3,613 8500 77.3 28	9000 88.9 21
Integrated Pump External Pressure	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits	LBS MPC-FC Tons °F Type Qty Qty	361 1000 8.6 32 1 1	372 Motiva	383 ir reserve 1200 10.9 34	548 s the right 1500 13.0 33	835 2200 17.1 33 2	857 changes	923 to produce 0000 11.7 333	1,761 t specifica 3500 25.7 34 R 2	1,805 ations with 4000 29.2 33 410A 2 1	1,860 out notice 50 34 3	2,025 000 .3 3	6000 44.0 32 4 2	7200 52.5 30 4 2	3,480 80 66	4,605 000 3.8 31 4 2	3,613 8500 77.3 28 4 2	9000 88.9 21 4 2
Integrated Tank Volume Gallons 50 50 50 50 100 100 100 100 130	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors	MPC-FC Tons °F Type Qty Qty GPM	361 1000 8.6 32 1 1 21	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26	548 s the right 1500 13.0 33 1 1 31	2200 17.1 33 2 1 41	857 changes	923 to produc 000 11.7 33 2 1	3500 25.7 34 R- 2 1 62	1,805 ations with 4000 29.2 33 410A 2 1 70	1,860 out notice 50 34 3	2,025	44.0 32 4 2 106	4,605 7200 52.5 30 4 2 126	3,480	4,605 000 3.8 31 4 2 53	3,613 8500 77.3 28 4 2 186	9000 88.9 21 4 2 214
Condenser Fan(s) Condenser F	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate	MPC-FC Tons °F Type Qty Qty GPM PSID	361 1000 8.6 32 1 1 21 5.71	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72	548 s the right 1500 13.0 33 1 1 1 31 5.96	835 2200 17.1 33 2 1 41 6.30	857 changes	923 to produc 0000 11.7 33 2 1 1 52 6.65	1,761 t specifica 3500 25.7 34 R-2 1 62 7.00	1,805 4000 29.2 33 410A 2 1 70 6.88	1,860 out notice 500 34 3 4 2 8 7.3	2,025 2. 00 3 3 4 2 3 3 3	6000 44.0 32 4 2 106 9.45	7200 52.5 30 4 2 126 10.96	3,480 80 6;	4,605 000 3.8 31 4 2 53 .83	3,613 8500 77.3 28 4 2 186 5.83	4,825 9000 88.9 21 4 2 214 6.07
NOISE DATA Sound Pressure Level at 32.8' dBA 61.2 60 60.4 60.4 60.8 62.5 63.8 63.3 64.3 64.9 67.7 69.8 69.4	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping)	MPC-FC Tons °F Type Qty Qty GPM PSID PSID	361 1000 8.6 32 1 1 21 5.71 11.3	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11	1500 13.0 33 1 1 1 31 5.96 9.81	835 2200 17.1 33 2 1 41 6.30 9.92	857 changes 3	923 to produc 000 11.7 333 2 1 1 52 6.65 1.43	1,761 t specifica 3500 25.7 34 R-2 1 62 7.00 12.96	1,805 4000 29.2 33 410A 2 1 70 6.88 12.14	1,860 out notice 50 34 3 4 2 8 8 7.1	2,025 2. 00 3 3 4 2 3 3 3 4 2 4 7	44.0 32 4 2 106 9.45 14.47	7200 52.5 30 4 2 126 10.96 17.16	3,480 80 6. 3	4,605 000 3.8 331 4 2 53 .83 1.08	3,613 8500 77.3 28 4 2 186 5.83 12.84	4,825 9000 88.9 21 4 2 214 6.07 11.67
Sound Pressure Level at 32.8' dBA 61.2 60 60.4 60.4 60.8 62.5 63.8 63.3 64.3 64.9 67.7 69.8 69.4 ELECTRICAL DATA Full Load Current (FLA) A 23.2 32.0 37.0 43.7 55.7 69.7 73.9 86.5 111.8 131.4 156.4 193.2 224.8	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume	MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSI Gallons	1000 8.6 32 1 1 21 5.71 11.3 27.5;	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50	1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50	2200 17.1 33 2 1 41 6.30 9.92 30.70	857 changes 3 2	923 to produce 0000 11.7 333 2 1 1.552 1.665 1.43 1.46	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100	1,805 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100	1,860 out notice 50 34 3 4 2 8 7.3 14 36	2,025 2. 2,025 2. 33 3 4 2 47 20 30	44.0 32 4 2 106 9.45 14.47 38.51 130	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130	3,480 66 3 1 5 111 40	4,605 3.8 31 4 2 53 .83 1.08 0.32 30	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130	4,825 9000 88.9 21 4 2 214 6.07 11.67 46.37 130
Electrical V/PH/Hz	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s)	MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSI Gallons	1000 8.6 32 1 1 21 5.71 11.3 27.5;	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50	1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50	835 to make c 2200 17.1 33 2 1 41 6.30 9.92 30.70 100 2	857 changes 3	923 to produce 0000 11.7 33 2 1 552 1.665 1.43 1.46 1000 2	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3	1,805 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3	1,860 out notice 50 34 3 4 2 8 7.1 14. 36	2,025 2. 00 3 3 3 4 2 3 3 3 2 47 20 30 4	44.0 32 4 2 106 9.45 14.47 38.51 130 5	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130	3,480 66 3 1 5 111 40	4,605 3.8 31 4 2 53 .83 1.08 0.32 30	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130	4,825 9000 88.9 21 4 2 214 6.07 11.67 46.37 130
Electrical V/PH/Hz	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA	MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSI Gallons Qty	1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50 2	548 s the right 1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50 2	2200 17.1 33 2 1 41 6.30 9.92 30.70 100 2	857 changes 3 2 4 1 1 3 stance m	923 to product 11.7 33 2 1 552 665 1.43 1.46 100 2 easured in	1,761 t specific: 3500 25.7 34 R- 2 1 62 7.00 12.96 36.58 100 3	1,805 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 if	1,860 out notice 500 34 3 4 2 8 7.3 14 36 13	2,025 2. 00 .3 3 3 4 2 3 3 3 2 47 20 30 4 4 Condens	44.0 32 4 2 106 9.45 14.47 38.51 130 5	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5	3,480 66 3 11 5 11 40	4,605 3.8 31 4 2 53 .83 1.08 0.32 30 6	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6	9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6
Full Load Current (FLA) A 23.2 32.0 37.0 43.7 55.7 69.7 73.9 86.5 111.8 131.4 156.4 193.2 224.8 Min. Circuit Ampacity (MCA) A 27.1 37.0 43.3 47.7 60.8 76.0 80.8 90.5 116.8 137.6 163.9 203.0 236.2 Max. Overcurrent Protection (MOP) A 42.9 57.1 68.4 63.6 81.0 101.3 108.2 106.4 136.7 162.4 194.0 242.3 281.7 EQUIPMENT DIMENSIONS & WEIGHTS Length IN 63.4 87.4 87.4 132.1 132.1 132.1 171.5 171.5 210.6 210.6 250.0 250.0 250.0 Width IN 33.9 43.3 43.3 43.3 43.5 43.5 43.5 43.5 43.5	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8'	MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSI Gallons Qty	1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50 2	548 s the right 1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50 2	2200 17.1 33 2 1 41 6.30 9.92 30.70 100 2	857 changes 3 2 4 1 1 3 stance m	923 to product 000 11.7 33 2 1 552 655 1.43 1.46 100 2 easured in 10.8	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 1 an open 62.5	1,805 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 I 63.8	1,860 500 344 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2,025 2. 00 .3 3 3 4 2 3 3 3 2 47 20 30 4 4 Condens	44.0 32 4 2 106 9.45 14.47 38.51 130 5	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5	3,480 66 3 11 5 11 40	4,605 3.8 31 4 2 53 .83 1.08 0.32 30 6	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6	9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6
Min. Circuit Ampacity (MCA) A 27.1 37.0 43.3 47.7 60.8 76.0 80.8 90.5 116.8 137.6 163.9 203.0 236.2 Max. Overcurrent Protection (MOP) A 42.9 57.1 68.4 63.6 81.0 101.3 108.2 106.4 136.7 162.4 194.0 242.3 281.7 EQUIPMENT DIMENSIONS & WEIGHTS Length IN 63.4 87.4 87.4 132.1 132.1 132.1 171.5 171.5 210.6 210.6 250.0 250.0 250.0 Width IN 33.9 43.3 43.3 43.5 43.5 43.5 43.5 43.5 43.5	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA	MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSI Gallons Qty dBA	1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50 2	548 s the right 1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50 2	2200 17.1 33 2 1 41 6.30 9.92 30.70 100 2	857 changes 3 2 4 1 1 3 stance m	923 to product 000 11.7 33 2 1 552 655 1.43 1.46 100 2 easured in 10.8	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 n an open 62.5 udes Integ	1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 I 63.8 rated Pumpi	1,860 500 344 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2,025 2. 00 .3 3 3 4 2 3 3 3 2 47 20 30 4 4 Condens	44.0 32 4 2 106 9.45 14.47 38.51 130 5	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5	3,480 66 3 11 5 11 40	4,605 3.8 31 4 2 53 .83 1.08 0.32 30 6	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6	9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6
EQUIPMENT DIMENSIONS & WEIGHTS Length IN 63.4 87.4 87.4 132.1 132.1 132.1 171.5 171.5 210.6 210.6 250.0	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8' ELECTRICAL DATA	MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSI Gallons Qty dBA	1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 50 2 60	548 s the right 1500 13.0 33 1 1 31 5.96 9.81 31.68 50 2	2200 17.1 33 2 1	857 changes 3 2 4 1 1 1 3 4 5 Stance m	923 to product 11.7 33 2 1 552 665 1.43 1.46 100 2 easured in 10.8 Included	1,761 t specific: 3500 25.7 34 R- 2 1 62 7.00 12.96 36.58 100 3 n an open 62.5 udes Integ	1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 I 63.8 rated Pump 3/60	1,860 500 344 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2,025 2. 00 3 3 4 2 3 3 47 20 30 4 Condens 3	44.0 32 4 2 106 9.45 14.47 38.51 130 5 er 64.3	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5	3,480 66 3 11 5 111 40 1	4,605 3.8 31 4 2 53 .83 .08 0.32 30 6	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6	4,825 9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6
Length IN 63.4 87.4 87.4 132.1 132.1 132.1 171.5 171.5 210.6 210.6 250.0 250.0 250.0 Width IN 33.9 43.3 43.3 43.5	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8' ELECTRICAL DATA Electrical	MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSI Gallons Qty dBA	1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2 61.2	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 50 2 60	1500 13.0 33 1 1 1 5.96 9.81 31.68 50 2 60.4	2200 17.1 33 2 1 1 41 6.30 9.92 30.70 100 2 Di 60.4	857 changes 3 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	923 to product 000 11.7 33 2 1 552 665 1.43 1.46 100 2 easured in 10.8 Included 15.7	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 n an open 62.5 udes Integ 460/ 69.7	1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 J 63.8 rated Pumj 3/60 73.9	1,860 34 34 3 4 36 7 14 36 13 Feet from 63 0	2,025 2. 00 3 3 4 2 3 3 47 20 30 4 Condens 3.3	6000 44.0 32 4 2 106 9.45 14.47 38.51 130 5 er 64.3	4,605 7200 52.5 30 4 2 126 10.96 40.32 130 5 64.9	3,480 66 3 11 5 11 40 1	4,605 3.8 31 4 2 53 83 1.08 0.32 30 6	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6	9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6
Width IN 33.9 43.3 43.5	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8' ELECTRICAL DATA Electrical Full Load Current (FLA)	MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSID Gallons Qty dBA V/PH/Hz A	1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2 61.2	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 50 2 60 32.0 37.0	1500 13.0 33 1 1 1 5.96 9.81 31.68 50 2 60.4	2200 17.1 33 2 1 41 6.30 9.92 30.7 100 2 Di 60.4 43.7 47.7	857 changes 3 2 4 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	923 to product 11.7 33 2 1 552 6.65 1.43 1.46 100 2 teasured in 10.8 Included 15.7 10.8	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 n an open 62.5 udes Integ 460/ 69.7 76.0	1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 I 63.8 rated Pump 3/60 73.9 80.8	1,860 34 3 4 2 8 7 14 36 11 Feet from 63 0	2,025 2. 00 3 3 4 2 3 3 47 20 30 4 Condens 3.3	6000 44.0 32 4 2 106 9.45 14.47 38.51 130 5 eer 64.3	4,605 7200 52.5 30 4 2 126 10.96 40.32 130 5 64.9	3,480 66 3 11 5 11 40 1 15 16	4,605 3.8 31 4 2 53 83 1.08 0.32 30 6 7.7	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6 69.8	9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6
Height IN 60.6 82.7 82.7 85.8 <th< td=""><td>FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8' ELECTRICAL DATA Electrical Full Load Current (FLA) Min. Circuit Ampacity (MCA) Max. Overcurrent Protection (MOP) EQUIPMENT DIMENSIONS & WEIGHTS</td><td>MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSID Gallons Qty dBA V/PH/Hz A A</td><td>1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2 61.2 23.2 27.1 42.9</td><td>372 Motiva</td><td>383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50 2 60 32.0 37.0 57.1</td><td>1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50 2 60.4</td><td>2200 17.1 33 2 1 41 6.30 9.92 30.70 2 Di 60.4 43.7 47.7 63.6</td><td>857 changes 3 2 4 1 1 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>923 to product 000 11.7 33 2 1 552 6.65 1.43 1.46 100 2 teasured in 60.8 Includes 15.7 10.8 11.0</td><td>1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 n an open 62.5 udes Integ 460/ 69.7 76.0 101.3</td><td>1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 / 63.8 rated Pumj 3/60 73.9 80.8 108.2</td><td>1,860 out notice 50 344 3 4 2 8 7 144 366 113 Feet from 63 0</td><td>2,025 2. 2,025 2. 2,025 2. 2,025 2. 2,025 2. 3. 3. 3. 4. 2. 3. 3. 3. 4. 2. 3. 3. 4. 2. 3. 3. 4. 2. 3. 3. 4. 2. 3. 3. 4. 2. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.</td><td>6000 44.0 32 4 2 106 9.45 14.47 38.51 130 5 er 64.3 111.8 116.8 136.7</td><td>4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5 64.9 131.4 137.6 162.4</td><td>3,480 66 3 11 55 111 40 1 1 6</td><td>4,605 000 3.8 31 4 2 53 .83 1.08 0.32 30 6 7.7</td><td>3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6 69.8 193.2 203.0 242.3</td><td>9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6 69.4</td></th<>	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8' ELECTRICAL DATA Electrical Full Load Current (FLA) Min. Circuit Ampacity (MCA) Max. Overcurrent Protection (MOP) EQUIPMENT DIMENSIONS & WEIGHTS	MPC-FC Tons °F Type Qty Qty GPM PSID PSID PSID Gallons Qty dBA V/PH/Hz A A	1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2 61.2 23.2 27.1 42.9	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50 2 60 32.0 37.0 57.1	1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50 2 60.4	2200 17.1 33 2 1 41 6.30 9.92 30.70 2 Di 60.4 43.7 47.7 63.6	857 changes 3 2 4 1 1 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	923 to product 000 11.7 33 2 1 552 6.65 1.43 1.46 100 2 teasured in 60.8 Includes 15.7 10.8 11.0	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 n an open 62.5 udes Integ 460/ 69.7 76.0 101.3	1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 / 63.8 rated Pumj 3/60 73.9 80.8 108.2	1,860 out notice 50 344 3 4 2 8 7 144 366 113 Feet from 63 0	2,025 2. 2,025 2. 2,025 2. 2,025 2. 2,025 2. 3. 3. 3. 4. 2. 3. 3. 3. 4. 2. 3. 3. 4. 2. 3. 3. 4. 2. 3. 3. 4. 2. 3. 3. 4. 2. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	6000 44.0 32 4 2 106 9.45 14.47 38.51 130 5 er 64.3 111.8 116.8 136.7	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5 64.9 131.4 137.6 162.4	3,480 66 3 11 55 111 40 1 1 6	4,605 000 3.8 31 4 2 53 .83 1.08 0.32 30 6 7.7	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6 69.8 193.2 203.0 242.3	9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6 69.4
In & Out Connection Size IN 1.5" 1.5" 1.5" 2" 2" 2" 2" 2.5" 2.5" 2.5" 5" 5" 5" 5" Estimated Shipping Weight LBS 1,323 1,676 1,764 3,208 3,241 3,329 4,630 4,850 5,335 5,445 6,162 6,603 7,154	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8' ELECTRICAL DATA Electrical Full Load Current (FLA) Min. Circuit Ampacity (MCA) Max. Overcurrent Protection (MOP) EQUIPMENT DIMENSIONS & WEIGHTS Length	LBS MPC-FC Tons F Type Qty Qty GPM PSID PSID PSID Gallons Qty dBA V/PH/Hz A A IN	1000 8.6 32 1 1 21 5.71 11.3 27.50 2 61.2 23.2 27.1 42.9	372 Motiva	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50 2 60 32.0 37.0 57.1	1500 13.0 33 1 1 1 5.96 9.81 31.68 50 2 60.4 37.0 43.3 68.4	2200 17.1 33 2 1 41 6.30 9.92 30.70 100 2 Di 60.4 43.7 47.7 63.6	857 changes 3 2 4 5 1 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	923 to product 11.7 33 2 1 552 665 1.43 1.46 100 2 eassured in 60.8 Inclu 15.7 10.8 11.0	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 n an open 62.5 udes Integ 460/ 69.7 76.0 101.3	1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 I 63.8 rated Pumj 3/60 73.9 80.8 108.2	1,860 out notice 50 34 3 4 2 8 7 14. 366 11. 4 Feet from 63 0	2,025 2. 2,025 2. 2,025 2. 2,025 2. 3 3 3 4 2. 3 3 3 4 7 20 30 4 Condens 3. 5. 6. 6. 6. 4	44.0 32 4 2 106 9.45 14.47 38.51 130 5 er 64.3 111.8 116.8 136.7	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5 64.9 131.4 137.6 162.4 210.6	3,480 66 3 11 55 111 40 1 1 66	4,605 000 3.8 31 4 2 53 .83 1.08 0.32 30 6 7.7	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6 69.8 193.2 203.0 242.3	4,825 9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6 69.4 224.8 236.2 281.7
Estimated Shipping Weight LBS 1,323 1,676 1,764 3,208 3,241 3,329 4,630 4,850 5,335 5,445 6,162 6,603 7,154	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8' ELECTRICAL DATA Electrical Full Load Current (FLA) Min. Circuit Ampacity (MCA) Max. Overcurrent Protection (MOP) EQUIPMENT DIMENSIONS & WEIGHTS Length Width	LBS MPC-FC Tons F Type Qty Qty GPM PSID PSID PSI Gallons Qty dBA V/PH/Hz A A IN IN	361 1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2 61.2 23.2 27.1 42.9 63.4 33.9	372 Motiva 1 1 2 3	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 50 2 60 32.0 37.0 57.1 87.4 43.3	548 s the right 1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50 2 60.4 37.0 43.3 68.4 87.4 43.3	835 to make c 2200 17.1 33 2 1 41 6.30 9.92 30.70 100 2 Di 60.4 43.7 47.7 63.6	857 changes 3 2 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	923 to produce 000 11.7 333 2 1 552 6.65 1.43 1.46 100 2 2 2 2 2 2 2 2 3 3 3 1.10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,761 t specific. 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 an open 62.5 ides Integ 460/ 69.7 76.0 101.3	1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 J field at 33 J 60 73.9 80.8 108.2 171.5 43.5	1,860 out notice 50 34 3 4 4 8 7. 144 36 11 4 50 10 10 17 43	2,025 2. 2,025 2. 2,025 2. 2,025 2. 3 3 3 4 2. 3 3 3 2. 47 20 30 4 Condens 3 5 5 5 5 5 5	6000 44.0 32 4 2 106 9.45 14.47 38.51 130 5 er 64.3 111.8 116.8 136.7 210.6 43.5	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5 64.9 131.4 137.6 162.4 210.6 43.5	3,480 66 3 11 55 111 40 1 1 16 18 18 28 44	4,605 3.8 31 4 2 53 .83 1.08 0.32 30 6 7.7 566.4 33.9 94.0	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6 69.8 193.2 203.0 242.3 250.0 43.5	4,825 9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6 69.4 224.8 236.2 281.7 250.0 43.5
	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8' ELECTRICAL DATA Electrical Full Load Current (FLA) Min. Circuit Ampacity (MCA) Max. Overcurrent Protection (MOP) EQUIPMENT DIMENSIONS & WEIGHTS Length Width Height	LBS MPC-FC Tons F Type Qty Qty Qty GPM PSID PSID PSI Gallons Qty dBA V/PH/Hz A A A IN IN IN	361 1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2 61.2 23.2 27.1 42.9 63.4 33.9 60.6	372 Motiva 11 22 3	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50 2 60 32.0 37.0 57.1 87.4 43.3 82.7	548 s the right 1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50 2 60.4 37.0 43.3 68.4 87.4 43.3 82.7	835 to make c 2200 17.1 33 2 1 41 6.30 9.92 30.70 100 2 Di 60.4 43.7 47.7 63.6 132.1 43.5 85.8	857 changes 3 2 4 (6) 1 1 3 (5) 4 (6) 6 (6) 6 (7) 6 (7) 6 (8) 6 (8) 1 1 1 1 2 8	923 to produce 000 11.7 333 2 1 52 1.45 52 6.65 1.43 1.46 1000 2 2 2 2 2 2 2 2 2 2 3 3 3 1 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 3 5 1 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 n an open 62.5 ides Integ 460/ 69.7 76.0 101.3	1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 I 63.8 rated Pumi 3/60 73.9 80.8 108.2 171.5 43.5 85.8	1,860 out notice 500 34 34 44 88 7.4 144 366 150 866 900 100 177 438	2,025 2. 2,025 2. 2,025 2. 2,025 2. 3 3 3 4 2. 3 3 3 2 4.7 20 30 4 <i>Condens</i> 3. 5. 5. 6.4	44.0 32 4 2 106 9.45 14.47 38.51 130 5 er 64.3 111.8 116.8 136.7	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5 64.9 131.4 137.6 162.4 210.6 43.5 85.8	3,480 66 3 11 55 111 40 11 66 15 16 19 25 44	4,605 3.8 31 4 2 53 .83 1.08 0.32 30 6 7.7 56.4 53.9 94.0	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6 6 69.8 193.2 203.0 242.3 250.0 43.5 85.8	4,825 9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6 69.4 224.8 236.2 281.7 250.0 43.5 85.8
	FREE COOLING CHILLERS WITH SCROLL COMPRESSORS Cooling Capacity 100% Free Cooling Ambient Refrigerant Number of Compressors Refrigerant Circuits Evaporator Flow Rate PSI Drops (Evap+Valves+Piping) F.C. PSI Drop (F.C.+Evap+Valve+Piping) Integrated Pump External Pressure Integrated Tank Volume Condenser Fan(s) NOISE DATA Sound Pressure Level at 32.8' ELECTRICAL DATA Electrical Full Load Current (FLA) Min. Circuit Ampacity (MCA) Max. Overcurrent Protection (MOP) EQUIPMENT DIMENSIONS & WEIGHTS Length Width Height In & Out Connection Size	LBS MPC-FC Tons F Type Qty Qty Qty GPM PSID PSID PSI Gallons Qty dBA V/PH/Hz A A A IN IN IN	361 1000 8.6 32 1 1 21 5.71 11.3 27.5; 50 2 61.2 23.2 27.1 42.9 63.4 33.9 60.6 1.5"	372 Motiva 11 22 3	383 ir reserve 1200 10.9 34 1 1 26 5.72 9.11 32.71 50 2 60 32.0 37.0 57.1 87.4 43.3 82.7 1.5"	548 s the right 1500 13.0 33 1 1 1 31 5.96 9.81 31.68 50 2 60.4 37.0 43.3 68.4 87.4 43.3 82.7 1.5"	835 to make c 2200 17.1 33 2 1 41 6.30 9.92 30.70 100 2 Di 60.4 43.7 47.7 63.6 132.1 43.5 85.8	857 changes 3 2 4 4 5 1 1 1 1 2 8	923 to produce 000 11.7 333 2 1 52 6.65 1.43 1.46 1000 2 2 2easured in 60.8 Inclu 15.7 10.8 11.0 32.1 3.5 15.8 2"	1,761 t specific: 3500 25.7 34 R-2 1 62 7.00 12.96 36.58 100 3 n an open 62.5 ides Integ 460/ 69.7 76.0 101.3 132.1 43.5 85.8 2"	1,805 ations with 4000 29.2 33 410A 2 1 70 6.88 12.14 39.33 100 3 field at 33 63.8 rated Pumi 3/60 73.9 80.8 108.2 171.5 43.5 85.8 2"	1,860 34 33 4 88 7. 144 366 10 866 90 100 177 433 855 2.	2,025 2. 2,025 2. 2,025 2. 2,025 2. 3 3 3 4 2. 3 3 3 2 47 20 30 4 Condens 3. 5 5 6.5 6.8 5 7	44.0 32 4 2 106 9.45 14.47 38.51 130 5 er 64.3 111.8 116.8 136.7 210.6 43.5 85.8 2.5"	4,605 7200 52.5 30 4 2 126 10.96 17.16 40.32 130 5 64.9 131.4 137.6 162.4 210.6 43.5 85.8 2.5"	3,480 66 3 11 55 111 40 1 1 15 16 19 25 44 88	4,605 000 3.8 31 4 2 53 .83 1.08 0.32 30 6 7.7 56.4 53.9 94.0 50.0 3.5 5.8 5"	3,613 8500 77.3 28 4 2 186 5.83 12.84 36.28 130 6 6 69.8 193.2 203.0 242.3 250.0 43.5 85.8 5"	9000 88.9 21 4 2 214 6.07 11.67 46.37 130 6 69.4 224.8 236.2 281.7 250.0 43.5 85.8 5"

OUR BUSINESS IS COOLING YOURS™

MLC & MLC-FC

60-500 tons air-cooled, water-cooled & split system chillers for industrial or HVAC applications. Available Integrated Free-Cooling.

MLC-SC Air-Cooled Scroll Chillers

100 – 285 tons air-cooled with scroll compressors to accommodate a wide range of operating points and customization for today's advanced industrial manufacturing and mission critical environments. Available Integrated Free-Cooling.

PTS

Pump/Tank Stations for chillers and cooling systems. Standard and custom designs available.

MFC

Closed loop dry-coolers for process cooling and remote "Free-Cooling" applications.

Chilled Door® Rack Cooling System

Advanced server rack cooling system fits any standard or OEM computer rack. Removes up to 75 kW of server heat per door. Learn more at www.chilleddoor.com

CDU

The Coolant Distribution Unit (CDU) provides 100% sensible cooling up to 1.25MW, depending on the model. For use with the ChilledDoor® or other IT cooling systems.

COOLING SOLUTIONS 85 Woodridge Drive Amherst, NY 14228 Tel: 716-691-9222

Fax: 716-691-9229 www.motivaircorp.com